State of the Art
State of the Art
Rationale
Tolerance to self is tightly regulated. The autoantibodies (auto-Abs) underlying the clinical symptoms are usually known, but their root cause remains a mystery for most conditions, despite continual increases in the prevalence of autoimmunity.
Myasthenia gravis (MG) is a rare (0.2-20/1,000,000 individuals) autoimmune disease first described in 1959-19601. It manifests as general muscle weakness and can be fatal if it affects the respiratory muscles. Its clinical symptoms are caused by auto-Abs targeting the transmitters at neuron-muscle junctions.
Epidemiologically, MG affects all age groups, but it appears to be more common in young women and elderly men. Patients of African origin may also be more frequently affected. The autoantibodies mostly target the acetylcholine receptor (RACh), the muscle-specific kinase receptors (MuSK) or LRP43. The presence of thymic tumors or dysplasia (thymoma in 10-15%, thymic hyperplasia in 65% of patients) suggests a thymic origin4. Furthermore, thymectomy has historically been used to treat MG.
There are several lines of evidence suggesting that MG has a genetic basis: (i) multiplex families (ii) a family history, and (iii) GWAS studies. However, the mechanism and genetic cause of MG remain elusive.
The work described in this proposal aims to fill the knowledge gap by deciphering the clinical, immunological, and genetic characteristics of MG patients, with the hypothesis that it will reveal general mechanisms of tolerance.
I will tackle this question with a three-fold approach combining
(i) clinical and thymic evaluation;
(ii) immunological studies including broad auto-Ab profiling,
(iii) unbiased searches for monogenic lesions
with the aim of discovering and characterizing new mechanisms of thymic tolerance.
References
References
Jayam Trouth A, Dabi A, Solieman N, Kurukumbi M, Kalyanam J. Myasthenia gravis: a review. Autoimmune Dis 2012;2012:874680. DOI: 10.1155/2012/874680.
Bubuioc AM, Kudebayeva A, Turuspekova S, Lisnic V, Leone MA. The epidemiology of myasthenia gravis. J Med Life 2021;14(1):7-16. DOI: 10.25122/jml-2020-0145.
Rivner MH, Quarles BM, Pan JX, et al. Clinical features of LRP4/agrin-antibody-positive myasthenia gravis: A multicenter study. Muscle Nerve 2020;62(3):333-343. DOI: 10.1002/mus.26985.
Yasumizu Y, Ohkura N, Murata H, et al. Myasthenia gravis-specific aberrant neuromuscular gene expression by medullary thymic epithelial cells in thymoma. Nat Commun 2022;13(1):4230. DOI: 10.1038/s41467-022-31951-8.
Honeybourne D, Dyer PA, Mohr PD. Familial myasthenia gravis. J Neurol Neurosurg Psychiatry 1982;45(9):854-6. DOI: 10.1136/jnnp.45.9.854.
Braun A, Shekhar S, Levey DF, et al. Genome-wide meta-analysis of myasthenia gravis uncovers new loci and provides insights into polygenic prediction. Nat Commun 2024;15(1):9839. DOI: 10.1038/s41467-024-53595-6.
Anderson MS, Venanzi ES, Klein L, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 2002;298(5597):1395-401. DOI: 10.1126/science.1075958.
Finnish-German AC. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet 1997;17(4):399-403. DOI: 10.1038/ng1297-399.
Nagamine K, Peterson P, Scott HS, et al. Positional cloning of the APECED gene. Nat Genet 1997;17(4):393-8. DOI: 10.1038/ng1297-393.
Husebye ES, Anderson MS, Kampe O. Autoimmune Polyendocrine Syndromes. N Engl J Med 2018;378(26):2543-2544. DOI: 10.1056/NEJMc1805308.
Casanova JL, Peel J, Donadieu J, Neehus AL, Puel A, Bastard P. The ouroboros of autoimmunity. Nat Immunol 2024;25(5):743-754. DOI: 10.1038/s41590-024-01815-y.
Papatestas AE, Osserman KE, Kark AE. The relationship between thymus and oncogenesis. A study of the incidence of non thymic malignancy in myasthenia gravis. Br J Cancer 1971;25(4):635-45. DOI: 10.1038/bjc.1971.79.
Abdou NI, Lisak RP, Zweiman B, Abrahamsohn I, Penn AS. The thymus in myasthenia gravis. Evidence for altered cell populations. N Engl J Med 1974;291(24):1271-5. DOI: 10.1056/NEJM197412122912403.
Payet CA, You A, Fayet OM, Dragin N, Berrih-Aknin S, Le Panse R. Myasthenia Gravis: An Acquired Interferonopathy? Cells 2022;11(7). DOI: 10.3390/cells11071218.
Nacu A, Andersen JB, Lisnic V, Owe JF, Gilhus NE. Complicating autoimmune diseases in myasthenia gravis: a review. Autoimmunity 2015;48(6):362-8. DOI: 10.3109/08916934.2015.1030614.
Bastard P, Hsiao KC, Zhang Q, et al. A loss-of-function IFNAR1 allele in Polynesia underlies severe viral diseases in homozygotes. J Exp Med 2022;219(6). DOI: 10.1084/jem.20220028.
Bastard P, Manry J, Chen J, et al. Herpes simplex encephalitis in a patient with a distinctive form of inherited IFNAR1 deficiency. J Clin Invest 2020;131(1)::e139980. DOI: 10.1172/JCI139980.
Bastard P, Michailidis E, Hoffmann HH, et al. Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine. J Exp Med 2021;218(4). DOI: 10.1084/jem.20202486.
Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 2020;370(6515). DOI: 10.1126/science.abd4570.
Pozzetto B, Mogensen KE, Tovey MG, Gresser I. Characteristics of autoantibodies to human interferon in a patient with varicella-zoster disease. J Infect Dis 1984;150(5):707-13. DOI: 10.1093/infdis/150.5.707.
Bastard P, Rosen LB, Zhang Q, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 2020;370(6515). DOI: 10.1126/science.abd4585.
Bastard P, Gervais A, Le Voyer T, et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Sci Immunol 2021;6(62). DOI: 10.1126/sciimmunol.abl4340.
Manry J, Bastard P, Gervais A, et al. The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proc Natl Acad Sci U S A 2022;119(21):e2200413119. DOI: 10.1073/pnas.2200413119.
Bastard P, Vazquez S, Liu J, et al. Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs. Sci Immunol 2022:eabp8966. DOI: 10.1126/sciimmunol.abp8966.
Zhang Q, Pizzorno A, Miorin L, et al. Autoantibodies against type I IFNs in patients with critical influenza pneumonia. J Exp Med 2022;219(11). DOI: 10.1084/jem.20220514.
Gervais A, Rovida F, Avanzini MA, et al. Autoantibodies neutralizing type I IFNs underlie West Nile virus encephalitis in approximately 40% of patients. J Exp Med 2023;220(9). DOI: 10.1084/jem.20230661.
Gervais A, Marchal A, Fortova A, et al. Autoantibodies neutralizing type I IFNs underlie severe tick-borne encephalitis in approximately 10% of patients. J Exp Med 2024;221(10). DOI: 10.1084/jem.20240637.
Sole G, Mathis S, Friedman D, et al. Impact of Coronavirus Disease 2019 in a French Cohort of Myasthenia Gravis. Neurology 2021;96(16):e2109-e2120. DOI: 10.1212/WNL.0000000000011669.
Renton AE, Pliner HA, Provenzano C, et al. A genome-wide association study of myasthenia gravis. JAMA Neurol 2015;72(4):396-404. DOI: 10.1001/jamaneurol.2014.4103.
Zhong H, Zhao C, Luo S. HLA in myasthenia gravis: From superficial correlation to underlying mechanism. Autoimmun Rev 2019;18(9):102349. DOI: 10.1016/j.autrev.2019.102349.
Chia R, Saez-Atienzar S, Murphy N, et al. Identification of genetic risk loci and prioritization of genes and pathways for myasthenia gravis: a genome-wide association study. Proc Natl Acad Sci U S A 2022;119(5). DOI: 10.1073/pnas.2108672119.
Bastard P, Orlova E, Sozaeva L, et al. Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. J Exp Med 2021;218(7). DOI: 10.1084/jem.20210554.
Vallbracht A, Treuner J, Flehmig B, Joester KE, Niethammer D. Interferon-neutralizing antibodies in a patient treated with human fibroblast interferon. Nature 1981;289(5797):496-7. DOI: 10.1038/289496a0.
Fierlbeck G, Schreiner T. Incidence and clinical significance of therapy-induced neutralizing antibodies against interferon-beta. J Interferon Res 1994;14(4):205-6. DOI: 10.1089/jir.1994.14.205.
Mathian A, Breillat P, Dorgham K, et al. Lower disease activity but higher risk of severe COVID-19 and herpes zoster in patients with systemic lupus erythematosus with pre-existing autoantibodies neutralising IFN-alpha. Ann Rheum Dis 2022. DOI: 10.1136/ard-2022-222549.
Shiono H, Wong YL, Matthews I, et al. Spontaneous production of anti-IFN-alpha and anti-IL-12 autoantibodies by thymoma cells from myasthenia gravis patients suggests autoimmunization in the tumor. Int Immunol 2003;15(8):903-13. DOI: 10.1093/intimm/dxg088.
Le Voyer T, (…). The human alternative NF-κB pathway drives AIRE and tolerance to type I IFNs. Nature 2023;In Press.
Cheng MH, Fan U, Grewal N, et al. Acquired autoimmune polyglandular syndrome, thymoma, and an AIRE defect. N Engl J Med 2010;362(8):764-6. DOI: 10.1056/NEJMc0909510.
Rosenberg JM, Maccari ME, Barzaghi F, et al. Neutralizing Anti-Cytokine Autoantibodies Against Interferon-alpha in Immunodysregulation Polyendocrinopathy Enteropathy X-Linked. Front Immunol 2018;9:544. DOI: 10.3389/fimmu.2018.00544.
Walter JE, Rosen LB, Csomos K, et al. Broad-spectrum antibodies against self-antigens and cytokines in RAG deficiency. J Clin Invest 2015;125(11):4135-48. DOI: 10.1172/JCI80477.
De Ravin SS, Cowen EW, Zarember KA, et al. Hypomorphic Rag mutations can cause destructive midline granulomatous disease. Blood 2010;116(8):1263-71. DOI: 10.1182/blood-2010-02-267583.
Poziomczyk CS, Bonamigo RR, Santa Maria FD, Zen PR, Kiszewski AE. Clinical study of 20 patients with incontinentia pigmenti. Int J Dermatol 2016;55(2):e87-93. DOI: 10.1111/ijd.13060.
Hetemaki I, Kaustio M, Kinnunen M, et al. Loss-of-function mutation in IKZF2 leads to immunodeficiency with dysregulated germinal center reactions and reduction of MAIT cells. Sci Immunol 2021;6(65):eabe3454. DOI: 10.1126/sciimmunol.abe3454.
Matuozzo D, Talouarn E, Marchal A, et al. Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19. Genome Med 2023;15(1):22. DOI: 10.1186/s13073-023-01173-8.
Gambin T, Akdemir ZC, Yuan B, et al. Homozygous and hemizygous CNV detection from exome sequencing data in a Mendelian disease cohort. Nucleic Acids Res 2017;45(4):1633-1648. DOI: 10.1093/nar/gkw1237.
Huisman BD, Michelson DA, Rubin SA, et al. Cross-species analyses of thymic mimetic cells reveal evolutionarily ancient origins and both conserved and species-specific elements. Immunity 2025;58(1):108-123 e7. DOI: 10.1016/j.immuni.2024.11.025.
Park JE, Botting RA, Dominguez Conde C, et al. A cell atlas of human thymic development defines T cell repertoire formation. Science 2020;367(6480). DOI: 10.1126/science.aay3224.
Michelson DA, Hase K, Kaisho T, Benoist C, Mathis D. Thymic epithelial cells co-opt lineage-defining transcription factors to eliminate autoreactive T cells. Cell 2022;185(14):2542-2558 e18. DOI: 10.1016/j.cell.2022.05.018.
Yasumizu Y, Takeuchi D, Morimoto R, et al. Single-cell transcriptome landscape of circulating CD4(+) T cell populations in autoimmune diseases. Cell Genom 2024;4(2):100473. DOI: 10.1016/j.xgen.2023.100473.
Scarpino S, Di Napoli A, Stoppacciaro A, et al. Expression of autoimmune regulator gene (AIRE) and T regulatory cells in human thymomas. Clin Exp Immunol 2007;149(3):504-12. DOI: 10.1111/j.1365-2249.2007.03442.x.
Radovich M, Pickering CR, Felau I, et al. The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell 2018;33(2):244-258 e10. DOI: 10.1016/j.ccell.2018.01.003.
Beziat V, Tavernier SJ, Chen YH, et al. Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome. J Exp Med 2020;217(6). DOI: 10.1084/jem.20191804.
Pan F, Yu H, Dang EV, et al. Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science 2009;325(5944):1142-6. DOI: 10.1126/science.1176077.
Grosche L, Knippertz I, Konig C, et al. The CD83 Molecule - An Important Immune Checkpoint. Front Immunol 2020;11:721. DOI: 10.3389/fimmu.2020.00721.